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Linear fluctuations in a plasma 
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Abstract. The linear fluctuation spectrum is calculated from the Boltzmann equation with 
an arbitrary linear collision term. 

In the last two decades the incoherent scatter technique has received much interest. 
Today there exists a variety of ways to calculate the density fluctuation spectrum of 
a plasma. Thus, Dougherty and Farley (1960, 1963) used the fluctuation dissipation 
theorem. Rosenbluth and Rostoker (1962) showed that, for a collisionless plasma, 
the spectrum can be calculated by means of superposition of shielded test particles. 
Hagfors and Brockelman (1971) presented a theory based on transition probability 
functions. The case of a non-Maxwellian electron velocity distribution function and 
electron-ion collisions was considered by Perkins and Salpeter (1969,  who calculated 
the effect of suprathermal electrons on the electron plasma lines. In addition, we 
also mention the works of Grewal (1964a, b), Williamson (1968) and Theimer and 
Theimer (1973). In all of these theories weakly coupled systems are assumed, i.e. 
systems which are adequately described by only the particle self-motion and the mean 
fields. Collisions are included by means of a general linearised average collision 
operator C. The Boltzmann equation for the system thus reads 

( g - ' + ; E ( r ,  t )  * -)f(r, a U, t )  = O  
ao 

where E ( r ,  t )  is the electrostatic field and the operator g-' = a / &  + U * alar - C 
describes the particle self-motion. In Fourier-Laplace space thus 

(1b) 

Other notations are standard. 
In several cases of practical interest (e.g. Perkins and Salpeter 1965, Ganguly et 

a1 1979) we have to consider linearly stable plasmas, for which non-Maxwellian 
distribution functions and collisions both significantly affect the scattered spectrum. 
In a plasma with non-Maxwellian distribution functions, there are sometimes unstable 
modes, and our theory can of course not be used for such plasmas. However, stable 
collisional non-Maxwellian plasmas do occur (e.g. Perkins and Salpeter 1965, Ganguly 
et a1 1979), and we shall restrict our attention to such plasmas. 

Previous theories are not quite adequate for calculating the fluctuation spectrum 
of a collisional plasma if the velocity distribution functions are general. For instance, 
the general theory of Hagfors and Brockelman (1971) is somewhat restricted by the 
fact that their equation (39) has not yet been solved in the general case. The other 

- 1  g = i ( w - k * u ) - C .  
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theories mentioned above, Dougherty and Farley (1960, 1963), Perkins and Salpeter 
(1963,  Grewal (1964a, b), Williamson (19681, Theimer and Theimer (1973), only 
consider particular collision models or Maxwellian distribution functions. The purpose 
of the present paper is thus to present a simple calculation of the random spectrum 
of a plasma, governed by equation ( la),  with arbitrary collision operator C and 
velocity distribution functions. The spectrum thus obtained will unify the results 
obtained in all the works quoted above, except for Theimer and Theimer (1973) in 
the case of a velocity-dependent collision frequency. After a number of minor 
corrections that paper will also agree with our result, however?. 

We now derive the spectrum. This can be done by first neglecting the collective 
effects, i.e. setting the plasma parameter a = w p / ( k u T )  to zero. The spectrum for a # 0 
is then calculated in the same manner as in Grewal (1964a). Thus, for a = 0, we 
choose some arbitrary initial state, where for any 1, the lth particle in the system has 
the position r/ and the velocity o1 at the time t = 0. The space Fourier transform of 
the particle number density is then 

n (k, 0) = 1 exp(ik . r I )  
1 

at the time t = 0. The average evolution of all systems satisfying this initial condition 
is 

n L ( k ,  w )  = 1 do g [ S ( o  - o r ) ]  exp(ik . r r )  ( 2 6 )  
I 

where the index L denotes the time Laplace transform and g is the inverse of the 
operator g-' .  The average of the quantity n ( - k ,  O)nL(k, w ) ,  with the initial condition 
( 2 a )  fixed, is thus 

n(-k, O)n~(k, w )  = 1 exp[-ik * (rl, -r1~)1 do g [S(o  - u / ~ ) I .  ( 2 c )  

We finally average this expression over all initial states. This is done assuming that 
rI ,  and rf2 are distributed uniformly in space and the velocities ut2 are distributed 
according to the unperturbed velocity distribution function, f O .  A simple calculation 
then yields 

/ , . I 2  J 

2 Re(n(-k, O)nl.(k,  w ) )  = 2n0 Re d o g ( f 0 ) + ( 2 . r r ) ~ S ( k ) S ( w ) n : ,  ( 2 d )  

where no is the unperturbed particle number density. The first term on the right-hand 
side corresponds to the terms with I ,  = l 2  in equation ( 2 c )  and the second one to those 
with I ,  # 1 2 .  In the latter case we also use the fact that, when k = 0 ,  Re g ( f o )  = 
Re(-iw-'fo) = .rrS(w)fo (since w must have a small imaginary part if the Laplace 
transform in equation ( 2 6 )  is to converge). The dynamic form factor thus becomes 

J 

where the superscript 0 on a quantity denotes that it has been calculated for a = 0. 

+ Due to the lengthy algebra, the details cannot be presented here. These are stored under the British 
Library Supplementary Publications Scheme (PS reference number SUP 90057), and they can also be 
obtained from the author. 
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The restrictions on equation (2e) are obvious from the statistical assumptions used 
when deriving equation ( 2 4 .  That is, apart from the mean interaction given by the 
operator C, the particles move independently of each other. These are exactly the 
assumptions of equation ( l a ) ,  when the collective effects are neglected. 

For a f 0, the Fourier transform of the first-order density perturbation can be 
found, by solving the linearised equation ( l a ) ,  in terms of the susceptibility 

and the corresponding perturbation for a = 0, ny(k ,  0) as 

nl(k,  w )  = [ I  + x ( k ,  w)]-'nY(k, w ) .  

Using the relation 

(nl(k,  w)nT(k, w ' ) ) = ' L n ~ ( w - w ' ) ~ S ( k ,  w )  

where N is the number of particles in the system we derive 

S(k, 0) = 11 +x(k, w , / - 2 s " ( k ,  w ) .  ( 3 d )  

In equation ( 3 4  it is assumed that the presence of collective effects does not affect 
the average (nY(k, w)n:'* (k, U ' ) ) .  This is known as the dielectric superposition prin- 
ciple. 

For Maxwellian velocity distribution functions, it is now a simple matter to verify 
that equations (2e), (3a)  and (3d) satisfy the fluctuation dissipation theorem; and in 
particular (e.g. Sitenko 1967) 

(4) 

The results of Hagfors and Brockelman (1971) are recovered by noticing that the 
transition probability function is simply the Green function to the operator g-' 
(equation (39) in that paper being equivalent to the adjoint of equation ( l a )  with 
a = 0). The spectrum of Perkins and Salpeter (1965) has been derived from equation 
(3d) elsewhere (Uddholm 1981). 

An alternative relation to equation (4) has recently been suggested by Theimer 
and Behl(l980). This relation does not agree with the fluctuation dissipation theorem. 
On the other hand, we notice that, for a constant collision frequency, the spectrum 
calculated by Theimer and Theimer (1973) is the same as that derived by means of 
the fluctuation dissipation theorem, e.g. Dougherty and Farley (1963) or Sheffield 
(1975) for the simple BGK collision model. This discrepancy is due to the fact that 
Theimer and Behl(1980) calculated the response function by the method of Chambers 
(1952), who used the simple relaxation model. See also equations (13) and (27) in 
Hagfors and Brockelman (1971). 

Only one species was treated above, but generalisation to plasmas with many 
species is straightforward. Thus 

~ " ( k ,  w )  = -2(a2w)-' Im x ( k ,  w ) .  

where x,,, S; ,  n,(]and qn are the susceptibility, the random density fluctuation spectrum, 
the unperturbed particle number density and the particle charge for species a; U = e 
for the electrons. The dielectric number 1 +Ev xc, is denoted by E .  Swartz and Farley 
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(1979) have recently presented a generalised version of the fluctuation dissipation 
theorem, valid for plasmas with the species having different temperatures and drift 
velocities. We notice that, for Maxwellian velocity distribution functions, equation 
( 5 )  reduces to their result. 

We have presented a derivation of the random spectrum in a plasma. Its validity 
is restricted to plasmas in which, instead of solving the many-body problem, collisions 
can be accounted for by an average collision operator C. In other words, the range 
of validity is the same as that of the Boltzmann equation ( la ) .  Such plasmas are of 
great experimental interest. Collective effects were then included by means of the 
dielectric superposition principle. Generalisation to arbitrary external fields is, of 
course, quite straightforward. 

The author thanks Professor L Stenflo for valuable discussions. 
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